
NASA Technical Memorandum 110144 
I-, , -' ,'$'6' 

Analysis of Corner Cracks at Hole by a 
3-D Weight Function Method with 
Stresses &om Finite Element Method 

W. Zhao 
University of South Carolina, Columbia, South Carolina 

J. C. Newman, Jr. 
Langley Research Center, Hampton, Virginia 

M. A. Sutton 
University of South Carolina, Columbia, South Carolina 

X .  R. W u  
Institute of Aeronautical Materials, Beijing, Peoples Republic of China 

K. N. Shivakumar 
North Carolina A6T State University, Greensboro, North Carolina 

? 

July 1995 

National Aeronautics and 
Space Administration 
Langley Research Center 
Hampton, Virginia 23681-0001 

I c m 
rg W rg 
(E c 0 z a 0 

c 
UJ- a Z C L  



i 

4 

Analysis of Corner Cracks at Hole by a 3-D Weight Function Method with 
Stresses from Finite Element Method 

W. Zhao', J.C. Newman, Jr.2, M.A. Sutton', X.R. Wu3 and K.N. Shivakumd 

' University of South Carolina, Columbia, SC 29208, U.S.A. 

' NASA Langley Research Center, Hampton. VA 23681, U.S.A. 

Institute of Aeronautical Materials, Beijing 100095, P.R. China 

' North Carolina A & T State University, Greensboro, NC 27410. U.S.A. 

ABSTRACI' Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined 

using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used 

to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress 

distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading 

conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical 

parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double 

corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions 

available in the literature. 

1. INTRODUCTION 

The weight function method in linear elastic fracture mechanics originated from 

Bueckner's pioneering work El], but the widespread acceptance of the method is largely 

attributed to the discussion and extension made by Rice [2]. The attraction of the method is the 

separation of the geometry property of a cracked configuration from the applied load. The theory 

[1,2] shows that once the weight function is known for a cracked configuration, stress intensity 

factors for the cracked configuration under any applied load can be obtained by a quadrature of 

the product of the weight function and the stress distribution induced by the applied load acting 

on the same geometrical configuration but without a crack (also designated as uncracked stress 



distribution). It is this feature that gives the weight function method an advantage in dealing with 

various complex loading conditions. Indeed, extensive research and applications have been 

performed on the weight function method, and accurate weight functions for various 2-D crack 

problems of practical interest are now available (see, for example, Wu and Carlsson [3]). For 

3-D crack problems, however, this is not the case. The general 3-D weight function theory has 

long been established independently by Rice [2] and Bueckner [4]. On one hand, this general 

theory is applicable to any 3-D crack problems and has much wider use than determination of 

stress intensity factors under various loading conditions [5]. On the other hand, the determination 

of the 3-D weight functions based on this general theory requires considerable effort, because 

the weight functions can only be determined by various sophisticated numerical methods, such 

as the boundary element method [6], the 3-D finite element method [7,8], and the 3-D finite 

element alternating method [9], with the exception of half-plane cracks or a circular crack in an 

infinite domain, and cracks perturbed from these [10,11]. 

If our purpose is to determine stress intensity factors for plane cracks with elliptic-arc 

front under various loading conditions, as is often the case, alternative approaches in developing 

3-D weight function methods are available, which involve further assumptions. The most popular 

approach, as evidenced by a vast literature, is to adopt the "root mean square" concept proposed 

by Besuner [ 121, and often uses Newman and Raju's stress intensity factor equations [ 13,141 as 

the reference solutions in developing weight functions. Some typical work can be found in [15- 

191. This approach, although very useful, only produces averaged stress intensity factors around 

the ends of the two axes of an elliptic crack, and can not reflect variations of stress intensity 

factors along the crack front. 

A different approach has been developed and applied to several typical cracked 

configurations by the present authors [20-271. The accuracy of the method has been established 

through comparison with exact or well accepted numerical solutions, such as those in [13,28-331. 

In addition to its accuracy and efficiency, the 3-D weight function method [20] has two other 

advantages: (i) it gives the distribution of stress intensity factors along the crack front and (ii) 
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in many cases it does not require any reference solutions for the 3-D cracks in question. This 

latter advantage allows the method to produce independent solutions [20-231, and to solve 

problems for which no solutions exist, as shown in [24-261. However, the weight functions in 

these previous work are limited to relative crack sizes, a/t 10 .6 .  

The other element needed in weight function methods is the uncracked stress distribution 

at the crack location induced by the applied load. This information is often readily obtainable 

using 2-D theory of elasticity. However, special attention is needed for cracks emanating from 

stress concentrations, such as a hole or a notch. In such cases, stresses obtained from 2-D theory 

of elasticity may not represent satisfactorily the true stress distribution, if the hole or notch 

radius is small compared with the plate thickness. This effect is particularly significant for small 

cracks, and hence could have significant influence on the predicted fatigue crack life. Although 

this issue is important, it has not been properly addressed in the literature. There are 3-D 

solutions for stress concentration factors [34,35] which are helpful in analyzing fatigue crack 

initiations, but weight function methods require knowledge of the complete stress distribution 

in the crack region. 

The problems to be considered in this work involve both single or double comer cracks 

emanating from a circular hole in a wide, finite thickness plate. This crack configuration 

represents one of the most common sources of failures in aircraft structures, and has received 

considerable attention in the literature. Using a 3-D finite element method, Hechmer and Bloom 

[36] analyzed double comer cracks under remote tension. The most refined 3-D finite element 

analysis and extensive solutions were provided by Raju and Newman [28] for double comer 

cracks under remote tension, remote bending and wedge loading in the hole. Grandt and 

Kullgren [37] obtained a generalized solution for a single comer crack under crack face pressure 

loading by a finite element alternating method. Using an improved finite element alternating 

method, Nishioka and Atluri [38] considered double comer cracks. The weight function method 

has also been used to provide additional solutions for remote tension [23] by using 2-D 

uncracked stress distribution. 
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The present work uses a combined approach of the 3-D weight function method and the 

3-D finite element method in analyzing the comer cracked hole. The 3-D finite element method 

is used to analyze the uncracked hole under remote tension, remote bending, and wedge loading 

in the hole. The uncracked normal stress distribution under these three load conditions are 

determined for hole-radius-to-plate-thickness ratios of r/t=O.l, 0.25, 0.5, 1, 1.5 and 2.5. To 

facilitate the weight function application, these uncracked stress distributions are then fitted by 

polynomials. The 3-D weight function method [20] is first extended to cover a relative crack 

depth ah50.9, and to consider stress variations in the plate thickness direction. Then, with the 

uncracked stress distribution provided by the 3-D finite element method, the 3-D weight function 

method is used to determine stress intensity factors for comer cracked holes under remote 

tension, remote bending and wedge loading in the hole. The geometrical parameters considered 

in this work are: r/t=O.l, 0.25, 0.5, 1, 1.5 and 2.5; a/c=0.2,0.4, 1 and 2; a/t=0.01, 0.1,0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, within the limit of crack-length-to-hole-radius ratio of 2. 

The importance for using 3-D stress solutions in determining stress intensity factors by weight 

function methods is investigated. Also studied is the difference in stress intensity factors between 

single and double comer cracks. Some typical crack face displacements are provided as well. 

NOMENCLATURE 

a, c = semi-axes of a quarter-elliptical crack 

a,, cy = crack length for a- and c-slices 

b = half plate width 

COD = dimensionless crack face displacement 

E = elastic modulus 

E,, E, = elastic modulus for a- and c-slices 

E, = elastic modulus for spring slices 

F = dimensionless stress intensity factor 

h = half plate height 
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&, k, = stretching stiffness of restraining springs 

K = stress intensity factor 

&, K, = stress intensity factors for a- and c-slices 

P(x,y) = coupling force on the crack surface 

Q = shape factor of an ellipse 

r = hole radius 

r,, r, = dimensionless restraining area for a- and c-slices 

k, R, = restraining area for a- and c-slices 

t = plate thickness 

T = transition factor 

V = crack face displacement 

V,, V, = crack face displacement for a- and c-slices 

W,, W, = weight functions for a- and c-slices 

x, y, z = Cartesian coordinates 

7 = an interpolation function at the free surface 

v = Poisson ratio 

(T = remote tensile stress 

a(x,y) = stress on the crack surface 

a, = a reference stress 

p = parametric angle of an elliptical crack 

i9 = the complete elliptic integral of the second kind 

2. THE 3-D WEIGHT FUNCTION METHOD 

Instead of starting from the general 3-D weight function theory [2,4], another form for 

the 3-D weight function method [20] was developed using the slice synthesis model [39-411, the 

general weight function expressions for 2-D crack problems [42,43], and the exact solutions for 

a pressurized embedded elliptical crack in an infinite body [44]. The basic idea of this approach 
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is to decompose a 3-D cracked body into two types of OrthOgOMl slices of infinitesimal 

thickness. Each slice is assumed to be in a generalized plane stress state while containing a 

through-thickness crack. The properties of the 3-D cracked body are built into the slices by 

considering two effects: (i) the mechanical coupling between adjacent slices and (ii) the 

restraining effect of the uncracked area on the cracked slices. The 3-D property of a plane crack 

with elliptic-arc front is further assumed to be divisible into two parts: (1) the fundamental part 

that is common to all such cracks regardless of (a) their configuration (corner crack, surface 

crack or embedded crack), (b) the relative size of the crack with respect to the width or 

thickness) or (c) loading condition and (2) the particular part that depends on the given 

configurations and loading conditions. The fundamental part of the solutions is obtained by using 

the known exact stress and crack face displacement solutions for a pressurized embedded 

elliptical crack in an infinite body [MI. This is one of two reasons why, in many cases, the 

present method does not require any reference solutions for the 3-D crack in question. Let us 

elaborate on the method by considering the comer cracked hole in question. For brevity, we will 

focus on double comer cracks in describing the method. 

2.1 Modelin? and the Weight Functions 

Figure 1 shows the configuration to be considered. Although remote tension is shown, 

any other mode I loading can be analyzed. This cracked body is decomposed, as per Fig.2, into 

two types of orthogonal slices of infinitesimal thickness. Each slice is assumed to be in a 

generalized plane stress state. The symbols R, and R, in Fig.2, defined as the restraining areas, 

represent the uncracked area outside the sliced region. The slices parallel to the a-axis of the 

crack are designated as a-slices and those parallel to the c-axis as c-slices. The subscripts a or 

c are used to denote quantities corresponding to a- or c-slices. Note that a-slices correspond to 

edge-cracked configurations whereas c-slices correspond to center crack configurations as shown 

in Figs.3(a) and 3(b), respectively. Referring to Figs.3, another distinction needs to be made: 

basic slices and spring slices. The a-slice in Fig.3(a) is designated as a basic slice, because the 

thin slice is subjected to the same applied load 0, and has the same elastic modulus, E, as the 

. 
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3-D cracked body. The c-slice in Fig.3(b) is called a spring slice, because it is subjected to no 

externally applied load, and has a different elastic modulus, E,, which will be described latter. 

The loading of the spring slices in Fig.3(b) is such that the superposition of the two kinds of 

slices satisfies the loading condition of the original 3-D crack problem. For now, note that in 

Figs.3 the springs are placed on the slices’ boundaries towards which the crack extends and the 

distributed forces, P(x,y), are applied to the crack faces. These two elements simulate, 

respectively, the restraining effect due to the uncracked area R,, and the mechanical coupling 

between the adjacent basic slices due to the internal stress present on the free-body diagram of 

an a-slice. P(x,y) is the z-component of the uncracked stress induced by all the internal coupling 

stresses acting on an a-slice’s surface. It is noted that representing the internal coupling stress 

by P(x,y) is sufficient, involving no assumption, and is justified by the superposition principle. 

The other components of the uncracked stress, which are not normal to the crack surface, play 

no role in the model for mode I crack problems and can be discarded. Thus, all the 3-D 

properties necessary for considering mode I crack problems have, in principle, been incorporated 

into the slice models and hence their effects can be represented. 

Before determining P(x,y) (the load aspect) we need to consider the weight function (the 

geometry aspect). The slices shown in Figs.3 have elastic boundary constraints exerted by 

constraining springs with stiffness ki, (i=a,c). To represent the constraining effect of the 

uncracked area outside the sliced region, the stiffness k, is a function of restraining area Ri, 

(i=a,c). Using a properly non-dimensionalked form for R,, we have 
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in which ri, (i=a,c), varies from 0 to 00. In general, k,, as a function of ri, can not be 

determined without embarking upon 3-D analysis. However, the following judgement can be 

made: ki is a monotonic function of ri. That is, ki+0 as r i 4  (which is the case shown in Fig.4) 

and ki-- as ri+m (which is the case shown in Fig.5). Thus, these two limiting conditions serve 

as the lower and the upper bounds for the slices in Figs.3. Based on these bounding conditions 

we can construct the weight functions for the slices shown in Fig.3 as following, 

. 

where Wi (i=a,c) is the weight function for the slices in Fig.3. W,D,i and WzD,i free are the 

weight functions for the 2-D cracks with fixed boundary condition (Fig.5) and with free 

boundary condition (Fig .4), respectively. Ti(ri), designated as the transition factor, is an 

unknown function of restraining area, ri, which satisfies Ti( 00) =0, and T,(O) = 1. Although eq.(2) 

reduces the determination of the weight functions for the slices in Fig.3 to the determination of 

the transition factor Ti(ri), as was done for an embedded elliptical crack [20], it will not change 

the fact that in general it can not be determined without 3-D analysis. However, eq.(2) does tell 

us that if Ti(ri)=O, the first term WzD,i alone can be used as Wi. Mathematically, this 

corresponds to ri= 00, situations that infinite width and/or thickness dimensions will result in. 

Physically, the situations where WzD,i can be used as Wi are not limited to the cases of 

ri= 00. W2D,i applies to a wide range of cases in which the presence of a crack will not cause 

localized deformation on the boundary surfaces where the constraining springs of the slices act. 

Previous applications [20,22,23,27] based on W,D,i have shown very good agreement with 

finite element solutions for a/t 50.5 and finite but large ri. Other cases where WzD,i is used 

as Wi are situations where the problems have symmetric surfaces that can be taken as one of the 

slice’s boundaries; the constraining springs are replaced by rigid springs. Various problems of 

this type were solved in [24-261. 

8 



We consider the case of infinite width, that is (c+r)/b=O. The particular weight 

functions Wi for our case are 

where w& is the weight function for double edge cracks and W, is the weight function for two 

symmetric cracks emanating from a hole in an infinite plate. w& used in previous work was 

limited to ah10.6. It is extended to ahs0.9 in this work by using Wu and Carlsson’s recent 

work [3], and is given in Appendix A of this paper. 

2.2 Solution Procedures 

As mentioned earlier, the solution to a 3-D crack problem is divided into two parts: the 

fundamental part, and the particular part. These will be described in the following section. 

2.2.1 Fundamental Part 

This part of the solutions provide the fundamental relations between (a) the elastic moduli of 

basic slices and spring slices, (b) the stress intensity factors for a 3-D cracked body and the 

slices and (c) crack face displacements for a 3-D cracked body and the slices. The first relation 

determines the elastic modulus of the spring slices. The second and the third relations allow the 

determination of stress intensity factors and crack face displacements for a 3-D cracked body by 

using the stress intensity factors and crack face displacements for the slices. These relations have 

been obtained [20] by calibrating the method against the exact solutions for stress intensity 

factors and crack face displacements of a pressurized embedded elliptical crack in an infinite 

body [MI. These relations [20] are given below with brief discussions. 

2.2.1 .i Elastic Modulus of S ~ r i n ~  - Slices 
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The spring slices are devised to represent the mechanical coupling between adjacent basic 

slices, which is modeled by springs. While the spring force is a function of applied loads and 

configuration parameters, the stiffness of the spring can be reasonably assumed to be a function 

of material and the crack aspect ratio only. The result is 
I 

Es- a) C - -(y - 1)- u/csl 
E 1 - v  a 

where v is the Poisson’s ratio and 

2.2.1. ii Stress Intensity Factors and Crack Face Disulacements 

Referring to Fig.6 for definition of crack parameters, the following equation gives the relation 

between stress intensity factors K(p) for a 3-D crack at location 4p on the crack front, and the 

stress intensity factors K, for the two orthogonal slices intersecting at a common point (x,y), 

is the complete elliptic integral of the second kind. 

, 

where n= 1 for Ki I O  and n=2 for Ki > 0. The crack face displacement V(x,y) for a 3-D crack 

is equal to the crack face displacements for the slices. Thus, 

The validity of equations (5 )  and (6) has been proved analytically for a pressurized embedded 

elliptical crack in an infinite body [20], and numerically for various cracks of elliptic-arc front 
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in finite bodies under a variety of loading conditions, see, for example, [20,22,23], indicating 

that the assumptions made in the method are valid. 

2.2.2 Particular Part 

This part of the solution process for a 3-D crack problem deals with the particular 

geometry and loading conditions for the problem in question. The stress intensity factors and 

crack face displacements for both types of orthogonal slices are determined, with the aid of the 

fundamental solution in the first part of this section, by using 2-D weight function theory [ 1-31. 

Then the stress intensity factors and the crack face displacements for the 3-D crack are obtained 

by using the fundamental relations given above. Since we consider an infinite width plate, our 

slices are reduced to those in Fig.5. Their weight functions are given in eq. (3). 

Using the 2-D weight function theory [l-31, the stress intensity factors for the slices are 

The crack face displacements for the slices are 
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in which E,=E, E,=E,, which is given by eq. (4). The only unknown in these equations is the 

spring force P(x,y), which can be determined by the compatibility requirement on the crack face 

displacements. That is, 

The resulting integral equation for P(x,y) reads as, 

To solve this equation, the unknown spring force P(x,y) is expressed as a polynomial function 

of x and y: 

P(x,y)/ao=Xl +X,(X/C>~’~ +X3(y/a)ll3 +X,(x/c) +X,(y/a) +X,(x/c)(y/a) +h7(~/~)2+X8(y/a)2 

+&(x/~)l’~(y/a)~/~ + Xlo(x/c)2(y/a)2 + X 1 1 ( ~ / ~ ) 3  +X12(y/a)3 +X,,(X/C)~ + X14(y/a)4 

+ A1s(x/c)1/3(y/a) + h17(~/~)(y/a)1’3 + h,,(~/c)(y/a)~ + X,,(x/~)~(y/a) (1 1) 

where a, is a reference stress. The 1/3 terms are included because of their beneficial effect 

observed when each term was examined individually. Let eq. (11) be written in the abbreviated 

form 

b 
m y )  = o o x  Apj(X,Y) (12) 

j-1 

where b= 18. Substituting eq. (12) into (lo), the result can be expressed in the form 
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where 

These integrals represent the crack face displacements. To avoid double numerical integration, 

the inner integrals in the above expressions, which represent the stress intensity factors, are 

evaluated analytically. The remaining integrals are determined at 44 different locations as shown 

in Fig.7. These points are chosen based on the considerations of (1) symmetry about the x- and 

y-axes, and (2) sufficient distribution over the entire crack surface. The 44 data points are 

sufficient such that a further increase in the data points will not change the results. Then the 

resulting redundant system of simultaneous equations for A, is solved by a multiple linear 

regression scheme. Once Xj is known, P(x,y), the value for Ki and Vi are determined. Then, 

K(q) and V(x,y) are obtained by using the fundamental relations given in the first part of this 

section. However, one modification should be included in eq.(5), which is for a crack whose 

entire front is in a local plane strain field. For part-elliptical cracks, the crack front intersects 

the free surface, and the local plane strain field no longer exists at this point. This is accounted 

for in Appendix B. 

2.3 3-D Uncracked Stress Distribution 

The uncracked stress distribution, a(x,y), used in the weight function method was obtained by 

the 3-D finite element analysis [35]. To facilitate its application, the uncracked stress distribution 

was then fitted into the following equation: . 
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where q=2j-2 for remote tension and wedge loading, and q=2j-1 for remote bending. The uo 

is a reference stress and uo=a,=u for remote tension; u0=aw=P/(2rt) for wedge loading and 

uo=ub (remote outer fiber bending stress) for remote bending. The applied load in the hole is 

P. 

3. RESULTS AND DISCUSSIONS 

Using the uncracked stress distributions given by the 3-D finite element method, 

comprehensive solutions of stress intensity factors for a corner cracked hole under remote 

tension, remote bending and wedge loading in the hole will be provided in the following section 

by the 3-D weight function method. The results are compared, whenever possible, with existing 

solutions. The importance of using 3-D uncracked stress solutions in weight function methods 

is studied by comparing stress intensity factor solutions obtained from using 2-D and 3-D 

uncracked stress distributions. The difference in stress intensity factors between single and 

double corner cracks is investigated. Some typical results for crack face displacements are also 

provided. 

The stress intensity factors are given in a dimensionless form defined as 

Some typical crack mouth (x=y=O) displacements are given in the following dimensionless 

form: 
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3.1 Stress Intensity Factors for Double Corner Cracks 

3.1.1 Remote Bending 

The weight function results for double comer cracks under remote bending are listed in 

Tables 1-6 for r/t=O.l, 0.25,0.5, 1, 1.5 and 2.5, respectively. Comparisons with finite element 

solutions [28] are shown in Figs.8 through 10 for a/c=0.2, 2 and 1, respectively. Also shown 

are the results from Newman and Raju's empirical equations [14]. Before discussing the 

comparison, we note that the finite element solution [29] was obtained for (c+r)/b 50.2, while 

the weight function solution is obtained by using weight functions for (c+r)/b=O, and stress 

distributions for r/b=0.2. This difference in the models has minimal effect as long as the 

restraining areas in the finite element model were large enough to resist localized deformation 

on the back surface. For the cases of smaller restraining areas, the weight function solutions for 

infinite width cases will serve as a lower bound of solutions for the cases of finite width. 

Inspection of Figs.8 through 10 shows that the agreement between weight function and finite 

element solutions is generally very good, except for the region near the hole surface (p=90°) 

for a/t=0.2, where the precipitous drop-off of the finite element solutions has been shown to 

be mainly due to some "ill-shaped" elements near the hole surface [31]. Furthermore, the 

equation [ 141 generally gives a good estimation in this region, because finite element data in this 

region were not used in developing the equations [ 13,141. , 

3.1.2 Remote Tension 

Tables 7-12 list the weight function results for double comer cracks under remote tension 

with r/t =O. 1,O. 25,O. 5 ,  1, 1.5 and 2.5, respectively. Comparisons with other available solutions 

are shown in Figs.11 through 13 for a/c=0.2, 2.0 and 1.0, respectively. The general trend can 
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be divided into three categories by a/c and a/t ratios: (i) a/c=0.2 and 2.0 with alt10.5, (ii) 

a/c=0.2 and 2.0 with a/t=0.8 and (iii) a/c=1.0. 

For category (i) (Figs. 1 l(a,b) and 12(a,b)), the weight function solutions agree very well 

with various numerical solutions, with excellent agreement observed for a/c =0.2. The weight 

function solutions and the finite element solutions [28] coincide with each other, except for the 

region near the hole surface, where the finite element model contained "ill-shaped" elements 

[31]. It is noted that, for a/c=0.2, detailed convergence studies were performed in the finite 

element analysis [28]. For a/c=2, good agreement between the weight function method and the 

finite element alternating method 1381 is observed along the entire crack front. 

For category (ii), the weight function results and the finite elementlfinite element 

alternating results have good agreement around p=Oo and for a/t10.5, but they differ 

significantly in a large region towards p=90° (see a/t=0.8 in Figs.l2(a,b)), with the weight 

function solution being higher than the numerical solutions. 

For category (iii) (Figs.l3(a,b)), the results do not agree, except for a/t=0.2 with 

r/t=0.5 (Fig. 13(a)), where the weight function and the finite element solutions [36] agree within 

6%. The weight function results are either equal to or consistently lower than the f ~ t e  element 

results [28] for (p145", and consistently higher than the finite element results [28] towards 

p=90°. 

As shown in Figs.12 and 13, the weight function solutions are higher than the finite 

element solutions for some cases. However, since the weight functions used are for the cases 

of maximum constraint, it is expected that the weight function solutions would be either correct 

or a lower bound for the "true" solutions for the cases of finite restraining areas. Thus, it 

appears that additional finite element analysis with detailed convergence studies are needed to 

determine the source of the discrepancies shown in Figs.12 and 13. To further indicate the 

accuracy of the weight function solution, Figures 14(a,b) show the limiting cases as a / c 4  and 

00. The plane strain condition is assumed at p=O" for a/c 220  in Fig. 14(a) and at p=90° for 

a/c S0.05 in Fig. 14(b) (see Appendix B for details). In Fig. 14(b), a large r/t is used to keep c/r 
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within the weight function's limit of c/r =2. As observed, the weight function solutions produced 

the correct limits for 2-D cracks. 

3.1.3 Wedge Loading in the Hole 

The weight function results for double comer cracks under wedge loading in the hole are 

listed in Tables 13-18 for r/t=O.l, 0.25, 0.5, 1, 1.5 and 2.5, respectively. The 3-D finite 

element solution of the uncracked stress distribution is for a cosine wedge loading distribution, 

while the finite element stress intensity factor solutions reported in [28] were for cosine squared 

distributions. Before comparing the weight function solutions for the cosine distribution with the 

finite element solutions for the cosine squared distribution, it would be helpful to understand the 

difference between the two load distributions. Figure 15 shows such a comparison. The 2-D 

solutions are taken from [38,45]. As shown in Fig.15, the cosine distribution is higher than the 

cosine squared distribution by 8% at the hole surface (x/r=O), which is the maximum difference 

(This would make the weight function solution a little higher near (0=90"). The two solutions 

cross each other at about x/r=0.05 and the two distributions converge as x/r increases; the 

difference at x/r=l is about 1%. Figures 17 through 18 show a comparison of the weight 

function solutions with other available solutions (c/r ratios are given in these Figures to show 

the crack range in the x-direction). The trend here is the same as that for remote tension, and 

can be similarly discussed in terms of the same three categories as above. It is noted, however, 

that improved agreement is observed for category (ii) (a/c=0.2 and 2.0 with a/t=0.8, see 

Figs. 17(a,b)) and category (iii) (see Fig. 18(a)). 

3.2 Sirmificance in Using 3-D Uncracked Stress Solutions 

In the literature, applications of weight function methods to cracks emanating from stress 

concentrations have invariably used uncracked stress distributions from 2-D analysis. As 

indicated by 3-D analysis of stress concentration factors [34,35], the 2-D solutions may not 

represent the true solutions satisfactorily. By using both 2-D [46] and 3-D uncracked stress 

solutions, Figures 19(a,b) and 20(a,b) compare the weight function solutions obtained for remote 

tension. Two r/t ratios, 0.5 and 1; and two 'a/c ratios, 0.2 and 2, are considered. As can be 
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seen, the difference in stress intensity factors from 2-D and 3-D stress solutions depends on r/t. 

Since different crack shapes and sizes cover areas having different stresses, it also depends on 

a/c and a/t, and varies along the crack front. The general trend is: the smaller r/t and a/t, the 

larger the difference. For the same r/t and a/t ratios, the difference is more pronounced and is 

retained longer for a/c=2, primarily because the crack front is closer to the hole surface. It is 

clearly seen that the 2-D stress solution can overestimate the K-factors significantly for small 

comer cracks. This is of practical importance since most of fatigue life is spent when the crack 

is small. As the crack gets larger, the crack front gets farther from the comer region formed by 

the hole surface and the plate surface where the 2-D and 3-D stress solutions differ most. Hence, 

the difference decreases. However, for small r/t ratios with small a/t ratios, use of the 3-D 

uncracked stress solutions is necessary. 

3.3 Difference between SinPle and Double Cracks 

A single comer crack can be considered by using appropriate weight functions for c- 

slices. The solutions for a single crack are compared with those for double cracks in Figs.21 and 

22 for remote tension and remote bending, respectively. Because of the large a/t and small r/t 

ratios considered, the differences observed in Figs.21 and 22 are among the largest that comer 

cracks could have for these load cases. For remote tension, Figure 21(b) compares the ratio 

I&,/&, where K,, is for double cracks and K, for a single crack. As in Fig.2l(a), the same a/t 

ratio of 0.8 and L/r ratio of 1.005 are used, where L is the length of a through-thickness crack 

that has the same area as a corner crack. We note that the ratio of &/I& increases with a/c, 

since the comer crack becomes closer to a through crack. Also shown in Fig.2l(b) are the 

results from Shah’s conversion factor [47], and from through-thickness cracks [3]. In the 

literature, Shah’s conversion factor [47] is invariably used to obtain stress intensity factors for 

single crack by using solutions for double cracks, or vice versa. In this case, Shah’s result has 

an error in the range of 3-1 1 % ; it will overestimate K,, or underestimate I&, depending upon 

which one is the known solution. Figure 22 compares the same cracks as in Fig.2l(a), but under 
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remote bending. The differences are small. For very small cracks, single crack and double crack 

configurations will have the same solution. 

3.4 Crack Face DisDlacements 

Crack face displacement is a useful parameter in fatigue and fracture experiments, in 

fatigue crack modeling and in fracture criterion. The crack face displacement is obtained during 

the process of obtaining K values by the weight function method. Some typical crack face 

displacements at the crack mouth location (x = y =0) are shown in Fig.23. A large range of a/c 

ratios from 1 to 80 is considered, as represented by circles in the Figure. Also shown in Fig.23 

are the results for through-thickness cracks by Mall and Newman [48], with plane strain 

conditions assumed. As can be seen, the crack face displacement for comer cracks approaches 

that for through-thickness cracks as a/c increases (c/r decreases as a consequence). The two 

coincide for a/c>7 (c/r<O.O46). A slight difference (2%) at a/c=80 (c/r=0.004) is due to 

inaccuracies in the weight function; crack face displacements at other locations are expected to 

have better accuracy than at the crack mouth. 

4. CONCLUDING REMARKS 

Through the above analysis and discussions it is shown that the optimal combination of 

the 3-D weight function method and the 3-D finite element method provides an accurate and 

efficient approach to analyze 3-D cracks emanating from stress concentrations. Extensive results 

of stress intensity factors are obtained for remote tension, remote bending and wedge loading 

in the hole. The configuration parameters covered are r/t=O.l, 0.25, 0.5, 1, 1.5 and 2.5; 

a/c=0.2, 0.4, 1 and 2; and a/t=O.Ol, 0.1,0.2, 0.3,0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 within the 

limit of c/r=2. The significance in using 3-D uncracked stress distribution in 3-D weight 

function methods is demonstrated. This is particularly important to small comer cracks from 

relatively small holes. The difference in stress intensity factors between a single comer crack 

and double comer cracks is studied. Typical crack face displacements are also presented. To 

account for the change of stress state at the intersection of the crack front with the free surface, 

19 



an interpolation function is developed. With the aid of the superposition principle the solutions 

provided can be used to solve many practical problems. 
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Appendix A 
The weight function W,, in eq. (3a) is taken from Wu and Carlsson [3]. It was developed 

by making an assumed crack face displacement expression satisfy the following four conditions: 

(i) K-controlled near-tip crack face displacement, (ii) self-consistent K factor, (iii) vanishing 

curvature at crack mouth, and (iv) known solution at crack mouth. The resulting weight function 

has an accuracy better than 2% in K for alt10.85. 

Defining the dimensionless crack length s=a/t, the weight function [3] is expressed as 

follows: 

where 

- 
where 'I' represents differentiation with respect to s, and 
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F = 1 [ 3 1 5 x  f(s)-105V(s) -2OSflJ(s)] 
124 

2 

in which K and u are reference stress intensity factor and crack mouth displacement, 

respectively. The reference load case used is a uniform crack face pressure, 0. 

Appendix B 
The situation at the intersection of the crack front with the free surface differs from that 

in the interior in two aspects: (i) the order of stress singularity, and (ii) the stress state. The 

weight function method is unable to address the first issue but, fortunately, the study by the 3-D 

finite element method has shown that the non-square root singularity dominates only a very thin 

layer from the free surface, which is less than 3" in terms of crack parametric angle measured 

from the surface [30]. Furthermore, numerous applications have shown that stress intensity 

factors obtained without considering the changes in stress singularity produced good correlation 

to experimental data. Therefore, the change of stress singularity can be neglected from the 

application point of view. 

The modification to eq.(5) is concerned with the change of stress conditions, which 

occurs in a larger area than that in which the non-square root singularity dominates. The stress 
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state at the intersection of the crack front with the free surface is in general neither plane strain, 

nor plane stress, but somewhere in between. The modification to eq.(5) is based on the results 

from (i) the crack front constraint analysis [49] and (ii) the analysis of embedded elliptical cracks 

of various a/c ratios [23]. 

The constraint analysis [49] shows that most of the crack front is nearly in a plane strain 

state, except for a small region with a parametric angle of about 10" from the surface, where 

the constraint factor is zero. The analysis of embedded elliptical cracks [24] has shown that for 

a/c2-20, the stress intensity factor at the minor axis stays the same as that of a corresponding 

2-D center crack. This gives the condition that the stress intensity factor at the minor axis attains 

the appropriate value of the corresponding 2-D crack when a/c220. In other words, this 

condition implies that for a/c 120 ,  use of an appropriate stress state should make the stress 

intensity factor at the minor axis equal to that of the corresponding 2-D crack. This appropriate 

stress state is a plane strain state. 

' 

Based on these two considerations, an engineering estimation is adopted, such that an 

interpolation between plane stress and plane strain is completed as a function of a/c and Ap, the 

parametric angle measured from the surface. One way of accomplishing this is to modify eq.(5) 

as follows: 

where v(v,a/c,Ap) is a bi-quadratic function of a/c and Ap. The effect of this modification is to 

realize (i) plane stress conditions for Ap=O" with a/c=O (at p=Oo), or c/a=O (at p=90"); and 

(ii) plane strain conditions for Ap110"; and for a/c120 (at p=O"), or c/a120 (at p=90"). 

A bi-quadratic interpolation is used for portions between these extreme points, with slower 

changes towards A p =  10" and a/c=20. For example, the bi-quadratic function v(v,a/c,Ap) can 

take the following form (near p=Oo): 
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where (a/c),=20 with OIa/c120, and (Ap),=lO" with 0" I A p S  10". A schematic 

representation of q is given in Fig.Bl. The corresponding function for the case near p=W" can 

be obtained by replacing a/c with c/a in eq. (B2). Finally, it should be pointed out that the 

maximum difference between eq. (5) and eq. (Bl) is only 4% for v=0.3 .  

~ ~~~~~ - 
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Table 1 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote bending, r/t=O. 1 

a/c a/t po 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 0.01 0.820 0.826 1.015 1.202 1.393 1.606 1.850 2.285 2.561 

0.4 0.01 1.403 1.266 1.383 1.546 1.728 1.939 2.164 2.506 2.684 

1.0 0.01 2.645 
0.1 1.569 
0.2 1.384 

2.350 2.310 2.313 2.336 2.415 2.513 2.708 2.878 
1.380 1.327 1.322 1.356 1.422 1.539 1.875 2.193 
1.189 1.106 1.058 1.040 1.037 1.084 1.284 1.607 

1.787 1.720 1.652 1.575 1.513 1.451 1.429 1.527 
1.146 1.106 1.076 1.049 1.034 1.029 1.104 1.229 
0.933 0.867 0.810 0.763 0.724 0.704 0.767 0.887 
0.822 0.734 0.652 0.585 0.529 0.496 0.524 0.626 
0.744 0.639 0.539 0.455 0.388 0.347 0.340 0.412 

Table 2 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote bending, r/t=0.25 

0.2 
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1 .o 
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0.01 
0.1 

0.01 
0.1 
0.2 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.991 0.989 
0.656 0.650 

1.587 1.427 
1.006 0.896 
0.905 0.793 

2.688 2.382 
1.857 1.632 
1.579 1.358 
1.434 1.204 
1.338 1.098 
1.259 1.009 

1.900 1.725 
1.470 1.332 
1.240 1.105 
1.108 0.963 
1.017 0.859 
0.947 0.775 
0.890 0.706 
0.842 0.645 
0.799 0.591 
0.760 0.540 

1.220 
0.766 

1.550 
0.941 
0.807 

2.329 
1.584 
1.277 
1.096 
0.967 
0.860 

1.653 
1.277 
1.035 
0.871 
0.746 
0.645 
0.560 
0.485 
0.417 
0.352 

1.436 
0.876 

1.710 
1.024 
0.851 

2.311 
1.578 
1.235 
1.021 
0.862 
0.732 

1.578 
1.227 
0.970 
0.785 
0.640 
0.521 
0.419 
0.329 
0.245 
0.164 

1.639 
0.971 

1.873 
1.122 
0.899 

2.306 
1.604 
1.224 
0.974 
0.785 
0.629 

1.493 
1.176 
0.91 1 
0.709 
0.548 
0.414 
0.298 
0.193 
0.095 
0.006 

1.847 
1.062 

2.051 
1.238 
0.950 

2.353 
1.674 
1.247 
0.954 
0.732 
0.552 

1.423 
1.139 
0.867 
0.650 
0.476 
0.331 
0.205 
0.090 

-0.017 
-0.118 

2.053 
1.181 

2.219 
1.392 
1.034 

2.413 
1.781 
1.311 
0.975 
0.719 
0.512 

1.354 
1.107 
0.836 
0.610 
0.425 
0.270 
0.134 
0.013 

-0.102 
-0.21 1 

2.341 
1 SO2 

2.442 
1.744 
1.278 

2.549 
2.026 
1.525 
1.117 
0.784 
0.505 

1.320 
1.123 
0.862 
0.624 
0.418 
0.234 
0.067 

-0.084 
-0.222 
-0.362 

2.482 
1.951 

2.549 
2.045 
1.610 

2.689 
2.224 
1.731 
1.297 
0.916 
0.569 

1.406 
1.215 
0.946 
0.692 
0.464 
0.252 
0.052 

-0.133 
-0.305 
-0.483 
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1 .o 
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0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.046 1.041 
0.724 0.713 
0.658 0.639 

1.577 1.415 
1.121 0.994 
0.995 0.867 
0.925 0.793 
0.873 0.735 

2.535 2.243 
2.009 1.758 
1.739 1.494 
1.582 1.330 
1.470 1.207 
1.380 1.105 
1.305 1.018 
1.239 0.940 
1.180 0.868 
1.124 0.800 

1.758 1.594 
1.518 1.362 
1.337 1.182 
1.212 1.048 
1.120 0.944 
1.047 0.857 
0.985 0.782 
0.931 0.715 
0.883 0.653 
0.839 0.595 

1.279 
0.848 
0.739 

1.531 
1.053 
0.890 
0.791 
0.713 

2.188 
1.699 
1.408 
1.216 
1.067 
0.942 
0.835 
0.739 
0.650 
0.564 

1.524 
1.292 
1.098 
0.945 
0.820 
0.713 
0.620 
0.536 
0.458 
0.385 

1.491 
0.971 
0.825 

1.677 
1.145 
0.940 
0.809 
0.705 

2.163 
1.677 
1.359 
1.134 
0.956 
0.806 
0.676 
0.559 
0.450 
0.344 

1.451 
1.225 
1.020 
0.849 
0.703 
0.578 
0.467 
0.366 
0.272 
0.182 

1.678 
1.081 
0.889 

1.819 
1.247 
0.996 
0.828 
0.694 

2.147 
1.677 
1.333 
1.077 
0.870 
0.695 
0.543 
0.403 
0.270 
0.141 

1.368 
1.156 
0.944 
0.759 
0.598 
0.458 
0.333 
0.218 
0.109 
0.007 

1.855 
1.190 
0.947 

1.967 
1.367 
1.061 
0.851 
0.688 

2.178 
1.722 
1.347 
1.054 
0.815 
0.615 
0.438 
0.275 
0.120 

-0.027 

1.300 
1.102 
0.885 
0.689 
0.517 
0.365 
0.228 
0.101 

-0.018 
-0.131 

2.014 2.209 2.296 
1.319 1.605 1.873 
1.018 1.214 1.513 

2.099 2.263 2.341 
1.508 1.772 1.947 
1.150 1.368 1.574 
0.898 1.046 1.233 
0.702 0.784 0.926 

2.221 
1.790 
1.392 
1.065 
0.795 
0.566 
0.362 
0.175 
0.005 

-0.166 

1.233 
1.053 
0.838 
0.637 
0.457 
0.296 
0.149 
0.013 

-0.113 
-0.234 

2.330 
1.951 
1.542 
1.172 
0.848 
0.560 
0.297 
0.056 

-0.160 
-0.389 

1.197 
1.041 
0.833 
0.627 
0.435 
0.255 
0.085 

-0.073 
-0.219 
-0.370 

2.450 
2.093 
1.681 
1.292 
0.936 
0.605 
0.290 

-0.009 
-0.283 
-0.577 

1.274 
1.116 
0.899 
0.679 
0.469 
0.270 
0.077 

-0.105 
-0.276 
-0.455 
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Table 4 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote bending, r/t = 1 .O 

a/c a/t 4po 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 0.01 
0.1 
0.2 
0.3 
0.4 

1.059 
0.802 
0.722 
0.672 
0.632 

1.059 
0.791 
0.701 
0.641 
0.592 

1.296 
0.945 
0.815 
0.726 
0.654 

1.497 
1.079 
0.908 
0.786 
0.685 

1.668 
1.196 
0.984 
0.827 
0.696 

1.826 
1.313 
1.051 
0.860 
0.701 

1.957 2.109 2.186 
1.434 1.655 1.812 
1.121 1.296 1.477 
0.893 1.011 1.172 
0.709 0.777 0.893 

0.4 0.01 
0.1 

1.546 
1.233 
1.101 
1.022 
0.961 
0.911 
0.868 
0.830 
0.795 

1.386 
1.090 
0.957 
0.874 
0.807 
0.750 
0.699 
0.652 
0.609 

1.496 
1.157 
0.989 
0.878 
0.787 
0.709 
0.639 
0.575 
0.516 

1.632 
1.254 
1.045 
0.900 
0.780 
0.677 
0.585 
0.502 
0.425 

1.759 
1.354 
1.102 
0.921 
0.771 
0.642 
0.528 
0.424 
0.324 

1.891 
1.467 
1.170 
0.948 
0.767 
0.612 
0.475 
0.347 
0.224 

2.003 2.138 2.203 
1.586 1.775 1.882 
1.251 1.422 1.547 
0.991 1.115 1.233 
0.778 0.852 0.946 
0.598 0.622 0.679 
0.435 0.414 0.423 
0.284 0.223 0.181 
0.144 0.053 -0.042 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

1.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.417 
2.111 
1.888 
1.733 
1.617 
1.523 
1.442 
1.370 
1.304 
1.242 

2.137 
1.840 
1.617 
1.455 
1.328 
1.222 
1.128 
1.042 
0.962 
0.887 

2.081 
1.769 
1.521 
1.332 
1.176 
1.043 
0.925 
0.818 
0.718 
0.622 

2.053 
1.732 
1.458 
1.238 
1.053 
0.893 
0.750 
0.621 
0.499 
0.380 

2.032 
1.710 
1.415 
1.166 
0.952 
0.767 
0.602 
0.449 
0.302 
0.160 

2.056 
1.731 
1.41 1 
1.131 
0.889 
0.677 
0.485 
0.306 
0.135 

-0.029 

2.091 
1.771 
1.433 
1.127 
0.857 
0.618 
0.398 
0.193 
0.003 

-0.184 

2.185 
1.881 
1.532 
1.197 
0.889 
0.605 
0.338 
0.087 

-0.143 
-0.394 

2.296 
1.994 
1.638 
1.286 
0.955 
0.642 
0.340 
0.051 

-0.219 
-0.516 

2.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.660 
1.527 
1.403 
1.301 
1.217 

1 .504 
1.363 
1.231 
1.117 
1.019 
0.933 
0.857 
0.787 
0.722 
0.660 

1.436 
1.284 
1.133 
1 .Ooo 
0.881 
0.774 
0.677 
0.587 
0.504 
0.424 

1.365 
1.206 
1 .041 
0.889 
0.751 
0.624 
0.509 
0.402 
0.301 
0.203 

1.285 
1.125 
0.951 
0.786 
0.632 
0.492 
0.363 
0.241 
0.125 
0.013 

1.219 
1.062 
0.881 
0.705 
0.541 
0.389 
0.248 
0.114 

-0.014 
-0.137 

1.154 
1.004 
0.822 
0.642 
0.473 
0.315 
0.164 
0.021 

-0.113 
-0.245 

1.119 
0.978 
0.799 
0.616 
0.440 
0.270 
0.105 

-0.053 
-0.201 
-0.362 

1.190 
1.043 
0.855 
0.660 
0.470 
0.284 
0.103 

-0.073 
-0.239 
-0.421 

1.145 
1.082 
1.026 
0.976 
0.929 
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0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.062 1.062 1.298 1.495 1.660 1.811 1.932 2.069 2.138 
0.849 0.836 1.002 1.142 1.264 1.383 1.500 1.687 1.804 
0.768 0.744 0.869 0.967 1.044 1.115 1.188 1.345 1.481 
0.714 0.681 0.774 0.838 0.881 0.915 0.950 1.059 1.184 
0.671 0.629 0.696 0.729 0.741 0.747 0.755 0.819 0.912 
0.636 0.585 0.627 0.635 0.620 0.602 0.588 0.611 0.660 
0.606 0.545 0.566 0.550 0.513 0.472 0.436 0.421 0.418 

1 S O 2  
1.269 
1.138 
1.055 
0.992 
0.937 
0.889 
0.846 
0.807 
0.771 

1.368 
1.138 
1.003 
0.913 
0.841 
0.778 
0.722 
0.671 
0.623 
0.578 

1.475 
1.208 
1.038 
0.918 
0.820 
0.735 
0.658 
0.587 
0.521 
0.458 

1.599 
1.298 
1.089 
0.935 
0.807 
0.695 
0.594 
0.502 
0.415 
0.331 

1.720 
1.392 
1.144 
0.952 
0.791 
0.651 
0.526 
0.409 
0.296 
0.187 

1.850 
1.500 
1.209 
0.976 
0.782 
0.614 
0.462 
0.318 
0.179 
0.046 

1.959 
1.603 
1.279 
1.009 
0.783 
0.586 
0.407 
0.237 
0.079 

-0.079 

2.100 
1.762 
1.418 
1.108 
0.837 
0.594 
0.369 
0.159 

-0.035 
-0.250 

2.195 
1.868 
1.525 
1.202 
0.905 
0.629 
0.363 
0.110 

-0.128 
-0.389 

2.368 
2.151 
1.966 
1.821 
1.705 
1.609 
1.526 
1.451 
1.384 
1.320 

2.093 
1.872 
1.681 
1.528 
1.400 
1.291 
1.193 
1.105 
1.022 
0.944 

2.037 
1.796 
1.579 
1.396 
1.239 
1.102 
0.979 
0.866 
0.761 
0.660 

2.009 
1.751 
1 SO7 
1.295 
1.108 
0.942 
0.794 
0.658 
0.529 
0.404 

1.987 
1.720 
1.453 
1.213 
0.998 
0.808 
0.637 
0.476 
0.322 
0.172 

2.008 
1.731 
1.439 
1.170 
0.928 
0.712 
0.514 
0.326 
0.146 

-0.027 

2.040 
1.759 
1.449 
1.156 
0.890 
0.648 
0.422 
0.208 
0.008 

-0.190 

2.130 
1.850 
1.526 
1.208 
0.910 
0.631 
0.363 
0.109 

-0.127 
-0.390 

2.236 
1.952 
1.619 
1.286 
0.968 
0.665 
0.371 
0.087 

-0.181 
-0.481 

1.622 
1.527 
1.429 
1.343 
1.267 
1.200 
1.139 
1.083 
1.032 
0.984 

1.469 
1.360 
1.250 
1.150 
1.059 
0.976 
0.900 
0.829 
0.762 
0.698 

1.402 
1.276 
1.147 
1.025 
0.91 1 
0.806 
0.708 
0.617 
0.531 
0.448 

1.332 
1.195 
1.048 
0.907 
0.773 
0.648 
0.532 
0.423 
0.319 
0.217 

1.253 
1.110 
0.952 
0.796 
0.648 
0.509 
0.379 
0.255 
0.135 
0.018 

1.188 
1.043 
0.876 
0.709 
0.551 
0.401 
0.259 
0.122 

-0.010 
-0.138 

1.124 
0.982 
0.813 
0.642 
0.479 
0.323 
0.173 
0.028 

-0.110 
-0.249 

1.089 
0.951 
0.783 
0.609 
0.440 
0.276 
0.115 

-0.041 
-0.190 
-0.354 

1.158 
1.013 
0.835 
0.650 
0.469 
0.291 
0.116 

-0.055 
-0.219 
-0.402 
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Table 6 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote bending, r/t=2.5 

a/c a/t cpo 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.056 
0.901 
0.819 
0.764 
0.720 
0.682 
0.649 
0.620 
0.594 
0.570 

1.475 
1.322 
1.206 
1.122 
1.056 
1.001 
0.951 
0.907 
0.866 
0.827 

2.240 
2.102 
1.965 
1.846 
1.742 
1.651 
1.570 
1.496 
1.427 
1.363 

1.579 
1.513 
1.441 
1.373 
1.309 
1.250 
1.195 
1.142 
1.093 
1.045 

1.055 
0.887 
0.793 
0.728 
0.674 
0.626 
0.584 
0.545 
0.510 
0.477 

1.344 
1.185 
1.062 
0.970 
0.896 
0.83 1 
0.772 
0.719 
0.668 
0.620 

2.033 
1.874 
1.718 
1.579 
1.455 
1.343 
1.241 
1.146 
1.057 
0.972 

1.429 
1.345 
1.256 
1.171 
1.091 
1.014 
0.942 
0.872 
0.806 
0.741 

1.288 
1 .064 
0.928 
0.830 
0.747 
0.673 
0.607 
0.547 
0.491 
0.437 

1.448 
1.256 
1.101 
0.978 
0.875 
0.785 
0.704 
0.629 
0.558 
0.490 

1.983 
1.795 
1.607 
1.435 
1.277 
1.132 
0.999 
0.875 
0.758 
0.643 

1.364 
1.260 
1.149 
1.040 
0.935 
0.834 
0.739 
0.648 
0.560 
0.474 

1.481 
1.211 
1.032 
0.898 
0.783 
0.681 
0.590 
0.508 
0.431 
0.359 

1.568 
1.344 
1.153 
0.996 
0.861 
0.742 
0.635 
0.537 
0.444 
0.354 

1.949 
1.737 
1.518 
1.313 
1.122 
0.946 
0.783 
0.630 
0.485 
0.342 

1.295 
1.176 
1.045 
0.915 
0.789 
0.668 
0.554 
0.444 
0.337 
0.231 

1.640 
1.334 
1.113 
0.941 
0.794 
0.665 
0.551 
0.445 
0 345 
0.249 

1.684 
1.434 
1.206 
1.011 
0.843 
0.695 
0.562 
0.438 
0.319 
0.201 

1.933 
1.700 
1.452 
1.214 
0.993 
0.788 
0.597 
0.415 
0.239 
0.066 

1.217 
1.088 
0.944 
0.798 
0.657 
0.522 
0.393 
0.268 
0.145 
0.024 

1.783 
1.452 
1.188 
0.977 
0.799 
0.645 
0.506 
0.375 
0.251 
0.134 

1.809 
1.534 
1.268 
1.036 
0.834 
0.656 
0.495 
0.341 
0.193 
0.051 

1.958 
1.705 
1.426 
1.157 
0.905 
0.670 
0.449 
0.235 
0.029 

-0.175 

1.154 
1.018 
0.863 
0.707 
0.555 
0.410 
0.269 
0.131 

-0.005 
-0.137 

1.896 
1.558 
1.260 
1.014 
0.808 
0.630 
0.467 
0.313 
0.170 
0.034 

1.912 
1.623 
1.329 
1.064 
0.832 
0.626 
0.436 
0.255 
0.085 

-0.083 

1.984 
1.717 
1.416 
1.122 
0.845 
0.584 
0.333 
0.091 

-0.140 
-0.374 

1.092 
0.956 
0.796 
0.635 
0.479 
0.328 
0.181 
0.036 

-0.105 
-0.248 

2.020 
1.705 
1.391 
1.110 
0.866 
0.649 
0.449 
0.262 
0.092 

-0.097 

2.045 
1.754 
1.440 
1.145 
0.877 
0.632 
0.400 
0.181 

-0.023 
-0.252 

2.088 
1.806 
1.480 
1.156 
0.846 
0.548 
0.257 

-0.024 
-0.293 
-0.596 

1.057 
0.922 
0.761 
0.597 
0.437 
0.280 
0.125 

-0.027 
-0.174 
-0.341 

2.082 
1.789 
1.484 
1.196 
0.934 
0.690 
0.454 
0.229 
0.021 

-0.21 1 

2.136 
1.844 
1.525 
1.218 
0.932 
0.664 
0.405 
0.156 

-0.078 
-0.343 

2.231 
1.933 
1.587 
1.240 
0.906 
0.581 
0.262 

-0.049 
-0.347 
-0.687 

1.123 
0.980 
0.809 
0.635 
0.464 
0.295 
0.128 

-0.037 
-0.196 
-0.379 



Table 7 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote tension, r/t=O. 1 

a/c a/t po 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 0.01 

0.4 0.01 

1.0 0.01 
0.1 
0.2 

2.0 0.01 
0.1 
0.2 
0.3 
0.4 

0.827 

1.452 

2.791 
1.629 
1.473 

2.082 
1.327 
1.125 
1.048 
1.005 

0.836 

1.314 

2.487 
1.467 
1.320 

1.901 
1.248 
1.055 
0.975 
0.929 

1.033 

1.442 

2.454 
1.448 
1.283 

1.837 
1.241 
1.035 
0.942 
0.891 

1.232 

1.621 

2.467 
1.483 
1.293 

1.771 
1.242 
1.025 
0.922 
0.867 

1.440 

1.824 

2.501 
1.563 
1.339 

1.694 
1.243 
1.021 
0.912 
0.854 

1.677 

2.060 

2.594 
1.677 
1.396 

1.632 
1.250 
1.017 
0.898 
0.832 

1.954 

2.313 

2.707 
1.850 
1.513 

1.569 
1.265 
1.028 
0.904 
0.833 

2.448 

2.697 

2.925 
2.301 
1.874 

1.548 
1.378 
1.168 
1.037 
0.946 

2.758 

2.895 

3.112 
2.713 
2.402 

1.655 
1.540 
1.370 
1.271 
1.202 

Table 8 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote tension, r/t=0.25 

0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 

0.01 
0.1 
0.2 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.093 
0.651 

1.810 
1.026 
0.938 

3.122 
2.056 
1.734 
1.602 
1.536 
1.493 

2.217 
1.696 
1.426 
1.284 
1.199 
1.144 
1.107 
1.082 
1.068 
1.061 

1.094 
0.661 

1.631 
0.936 
0.859 

2.771 
1.851 
1.562 
1.439 
1.378 
1.338 

2.017 
1.577 
1.342 
1.211 
1.128 
1.073 
1.035 
1.010 
0.995 
0.987 

1.357 
0.793 

1.778 
1.009 
0.910 

2.717 
1.852 
1.552 
1.416 
1.345 
1.302 

1.938 
1.559 
1.337 
1.202 
1.113 
1.052 
1.010 
0.984 
0.969 
0.966 

1.610 
0.932 

1.971 
1.134 
1.01 1 

2.705 
1.906 
1.595 
1.444 
1.360 
1.314 

1.855 
1.545 
1.336 
1.200 
1.106 
1 .042 
1 .Ooo 
0.974 
0.962 
0.965 

1.856 
1.063 

2.171 
1.290 
1.129 

2.707 
2.000 
1.681 
1.515 
1.419 
1.367 

1.759 
1.523 
1.333 
1.198 
1.105 
1.043 
1.003 
0.979 
0.969 
0.978 

2.114 
1.197 

2.390 
1.477 
1.258 

2.769 
2.150 
1.809 
1.614 
1.499 
1.436 

1.681 
1.512 
1.338 
1.202 
1.107 
1.044 
1.003 
0.978 
0.970 
0.986 

2.376 
1.383 

2.599 
1.727 
1.444 

2.846 
2.343 
1.995 
1.774 
1.642 
1.571 

1.602 
1.497 
1.346 
1.217 
1.125 
1.063 
1.021 
0.996 
0.994 
1.031 

2.746 
1.901 

2.877 
2.282 
1.932 

3.014 
2.730 
2.445 
2.217 
2.059 
1.957 

1.565 
1.543 
1.442 
1.342 
1.267 
1.212 
1.171 
1.144 
1.148 
1.188 

2.926 
2.585 

3.010 
2.730 
2.550 

3.181 
3.014 
2.823 
2.665 
2.562 
2.506 

1.667 
1.674 
1.597 
1.515 
1.458 
1.421 
1.396 
1.384 
1.410 
1.483 



0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 
0.2 

0.01 
0.1 
0.2 
0.3 
0.4 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.329 
0.748 
0.671 

2.054 
1.272 
1.078 
1.003 
0.963 

3.345 
2.552 
2.148 
1.936 
1.808 
1.724 
1.669 
1.636 
1.622 
1.627 

2.328 
1.998 
1.755 
1.592 
1.480 
1.399 
1.339 
1.294 
1.263 
1.244 

1.325 
0.753 
0.680 

1.846 
1.151 
0.979 
0.914 
0.881 

2.964 
2.278 
1.925 
1.737 
1.621 
1.544 
1.495 
1.465 
1.453 
1.457 

2.114 
1.833 
1.626 
1.484 
1.383 
1.308 
1.253 
1.212 
1.182 
1.164 

1.636 
0.917 
0.817 

2.003 
1.258 
1.055 
0.974 
0.933 

2.897 
2.263 
1.920 
1.726 
1.603 
1.520 
1.467 
1.437 
1.427 
1.439 

2.026 
1.786 
1.602 
1.468 
1.368 
1.293 
1.237 
1.196 
1.168 
1.153 

1.919 
1.089 
0.962 

2.202 
1.418 
1.183 
1.085 
1.035 

2.871 
2.300 
1.968 
1.769 
1.639 
1.553 
1.499 
1.473 
1.469 
1.495 

1.933 
1.740 
1.581 
1.456 
1.360 
1.286 
1.233 
1.195 
1.171 
1.163 

2.175 
1.264 
1.098 

2.397 
1.609 
1.340 
1.219 
1.157 

2.857 
2.367 
2.053 
1.854 
1.720 
1.635 
1.585 
1.564 
1.570 
1.614 

1.826 
1.684 
1.551 
1.440 
1.351 
1.284 
1.236 
1.204 
1.186 
1.187 

2.425 
1.462 
1.239 

2.604 
1.841 
1.528 
1.375 
1.293 

2.905 
2.495 
2.196 
1.988 
1.847 
1.757 
1.706 
1.683 
1.694 
1.767 

1.739 
1.643 
1.533 
1.434 
1.352 
1.291 
1.247 
1.217 
1.202 
1.216 

2.654 
1.718 
1.431 

2.789 
2.116 
1.777 
1.591 
1.489 

2.968 
2.650 
2.382 
2.178 
2.034 
1.942 
1.888 
1.867 
1.899 
2.042 

1.652 
1.597 
1.514 
1.430 
1.360 
1.308 
1.268 
1.240 
1.234 
1.272 

2.939 
2.292 
1.946 

3.021 
2.607 
2.321 
2.117 
1.982 

3.119 
2.944 
2.761 
2.602 
2.484 
2.406 
2.355 
2.338 
2.401 
2.606 

1.607 
1.600 
1.555 
1 SO1 
1.457 
1.423 
1.398 
1.383 
1.400 
1.466 

3.066 
2.772 
2.618 

3.131 
2.906 
2.763 
2.657 
2.595 

3.282 
3.171 
3.044 
2.934 
2.862 
2.825 
2.814 
2.838 
2.956 
3.242 

1.709 
1.719 
1.687 
1.645 
1.611 
1.589 
1.575 
1.573 
1.606 
1.696 
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Table 10 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote tension, r/t= 1 .O 

ale a/t 

0.2 0.01 
-____---------- 

0.1 
0.2 
0.3 
0.4 

0.4 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

1.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

cpo 0.1 11.3 

1.552 1.545 
0.942 0.943 
0.779 0.782 
0.715 0.722 
0.682 0.691 

...................... 

2.286 2.052 
1.643 1.479 
1.349 1.217 
1.203 1.088 
1.117 1.014 
1.065 0.968 
1.032 0.941 
1.013 0.926 
1.003 0.920 

3.601 3.188 
3.092 2.740 
2.710 2.408 
2.448 2.181 
2.265 2.020 
2.133 1.903 
2.036 1.819 
1.967 1.759 
1.924 1.722 
1.910 1.709 

2.478 2.249 
2.288 2.080 
2.112 1.928 
1.968 1.804 
1.852 1.703 
1.759 1.620 
1.682 1.554 
1.621 1.501 
1.575 1.462 
1.545 1.436 

22.5 

1.898 
1.164 
0.954 
0.872 
0.830 

2.220 
1.616 
1.327 
1.179 
1.090 
1.035 
1.002 
0.986 
0.982 

3.110 
2.696 
2.384 
2.164 
2.003 
1.885 
1.801 
1.743 
1.709 
1.702 

2.151 
2.004 
1.871 
1.759 
1.665 
1.587 
1.526 
1.478 
1.443 
1.423 

_---------- 
33.8 

2.208 
1.387 
1.133 
1.029 
0.977 

2.428 
1.809 
1.493 
1.323 
1.220 
1.157 
1.123 
1.111 
1.118 

3.074 
2.703 
2.413 
2.200 
2.041 
1.925 
1.845 
1.795 
1.772 
1.783 

2.049 
1.928 
1.815 
1.717 
1.632 
1.562 
1 SO8 
1.468 
1.441 
1.431 

---------- 
45 .O 

2.474 
1.617 
1.317 
1.186 
1.119 

2.625 
2.024 
1.689 
1.499 
1.382 
1.314 
1.281 
1.278 
1.301 

3.050 
2.733 
2.472 
2.272 
2.121 
2.014 
1.945 
1.908 
1.901 
1.940 

1.932 
1.840 
1.750 
1.666 
1.594 
1.536 
1.493 
1.463 
1.447 
1.453 

---------- 
56.3 

2.719 
1.875 
1.525 
1.357 
1.271 

2.829 
2.273 
1.926 
1.713 
1.580 
1 S O 5  
1.472 
1.472 
1.512 

3.091 
2.827 
2.594 
2.406 
2.263 
2.165 
2.105 
2.074 
2.082 
2.165 

1.836 
1.771 
1.699 
1.630 
1.571 
1.526 
1.493 
1.471 
1.464 
1.493 

_____----- 
67.5 82.5 89.9 

2.927 3.163 3.263 
2.175 2.700 3.016 
1.793 2.382 2.862 
1.589 2.163 2.758 
1.479 2.022 2.703 

............................... 

3.004 3.216 3.317 
2.537 2.932 3.137 
2.206 2.700 2.999 
1.984 2.524 2.901 
1.842 2.404 2.850 
1.762 2.336 2.844 
1.728 2.308 2.874 ~ ~~ 

1.737 2.331 2.957 
1.815 2.473 3.180 

3.148 
2.942 
2.745 
2.579 
2.454 
2.370 
2.319 
2.299 
2.340 
2.514 

3.294 
3.169 
3.037 
2.922 
2.841 
2.795 
2.775 
2.792 
2.907 
3.211 

3.461 
3.367 
3.267 
3.180 
3.128 
3.113 
3.124 
3.175 
3.342 
3.723 

1.741 1.689 1.796 
1.700 1.674 1.788 
1.647 1.645 1.766 
1.593 1.614 1.741 
1.549 1.591 1.725 
1.517 1.578 1.719 
1.494 1.571 1.720 
1.480 1.575 1.734 
1.489 1.617 1.792 
1.554 1.730 1.927 
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0.2 0.01 1.642 1.633 2.004 2.324 2.593 
0.1 1.089 1.087 1.346 1.600 1.855 
0.2 0.879 0.880 1.083 1.290 1.505 
0.3 0.784 0.788 0.962 1.142 1.328 
0.4 0.734 0.740 0.896 1.061 1.228 
0.5 0.705 0.713 0.859 1.015 1.175 
0.6 0.685 0.695 0.836 0.992 1.155 

0.4 0.01 2.378 
0.1 1.861 
0.2 1.551 
0.3 1.371 
0.4 1.258 
0.5 1.182 
0.6 1.131 
0.7 1.099 
0.8 1.082 
0.9 1.083 

1.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

------------_---_ 

3.704 
3.334 
3.014 
2.766 
2.575 
2.428 
2.315 
2.229 
2.173 
2.148 

2.133 
1.671 
1.395 
1.236 
1.137 
1.071 
1.027 
1 .Ooo 
0.988 
0.993 

3.279 
2.949 
2.670 
2.456 
2.289 
2.161 
2.063 
1 .m 
1.943 
1.922 

2.305 
1.822 
1.525 
1.348 
1.233 
1.157 
1.106 
1.075 
1.062 
1.069 

3.197 
2.891 
2.631 
2.427 
2.265 
2.139 
2.045 
1.977 
1.934 
1.923 

2.518 2.716 
2.026 2.245 
1.710 1.922 
1.514 1.711 
1.385 1.570 
1.299 1.481 
1.246 1.432 
1.219 1.415 
1.216 1.428 
1.241 1.486 

3.158 
2.882 
2.644 
2.451 
2.296 
2.176 
2.090 
2.034 
2.006 
2.014 

2.541 2.305 2.204 2.098 
2.407 2.183 2.096 2.008 
2.273 2.066 1.993 1.921 
2.155 1.964 1.902 1.842 
2.054 1.876 1.821 1.770 
1.968 1.801 1.753 1.710 
1.894 1.738 1.696 1.663 
1.832 1.686 1.651 1.629 
1.785 1.647 1.619 1.607 
1.754 1.620 1.601 1.603 

.---------------------------------------- 

3.129 
2.894 
2.683 
2.506 
2.363 
2.258 
2.189 
2.151 
2.144 
2.188 

1.977 
1.907 
1.837 
1.771 
1.712 
1.665 
1.632 
1.610 
1.602 
1.617 

2.836 3.036 
2.132 2.432 
1.750 2.048 
1.539 1.813 
1.418 1.674 
1.357 1.603 
1.337 1.582 

2.920 3.092 
2.491 2.737 
2.172 2.448 
1.950 2.233 
1.800 2.086 
1.708 1.999 
1.662 1.959 
1.653 1.963 
1.686 2.044 
1.804 2.294 

3.168 3.224 
2.972 3.068 
2.785 2.912 
2.625 2.775 
2.498 2.671 
2.410 2.605 
2.357 2.570 
2.334 2.566 
2.350 2.628 
2.451 2.839 

1.877 1.779 
1.826 1.745 
1.771 1.703 
1.717 1.662 
1.671 1.630 
1.638 1.610 
1.617 1.599 
1.605 1.598 
1.611 1.623 
1.655 1.711 

3.255 3.346 
2.896 3.141 
2.617 2.995 
2.412 2.893 
2.276 2.843 
2.201 2.844 
2.176 2.888 

3.297 3.396 
3.080 3.249 
2.886 3.124 
2.732 3.031 
2.629 2.985 
2.578 2.990 
2.568 3.034 
2.612 3.137 
2.789 3.397 
3.242 3.986 

3.369 3.538 
3.269 3.458 
3.162 3.372 
3.069 3.299 
3.008 3.260 
2.983 3.259 
2.985 3.286 
3.028 3.360 
3.183 3.565 
3.556 4.017 

1.725 1.834 
1.709 1.822 
1.684 1.801 
1.660 1.781 
1.645 1.772 
1.642 1.774 
1.645 1.785 
1.663 1.810 
1.724 1.887 
1.865 2.053 
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Table 12 Dimensionless stress intensity factors for double comer cracks at a hole under 
remote tension, r/t=2.5 

a/c a/t 4po 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 0.01 1.715 1.705 2.089 2.417 2.688 2.929 3.122 3.326 3.411 
0.1 1.280 1.274 1.576 1.861 2.134 2.415 2.694 3.078 3.260 
0.2 1.042 1.040 1.287 1.532 1.781 2.056 2.362 2.860 3.136 
0.3 0.913 0.914 1.127 1.342 1.566 1.821 2.127 2.689 3.045 
0.4 0.836 0.839 1.029 1.224 1.429 1.668 1.971 2.577 3.006 
0.5 0.786 0.791 0.965 1.149 1.346 1.580 1.883 2.523 3.022 
0.6 0.754 0.761 0.924 1.104 1.304 1.539 1.848 2.517 3.085 
0.7 0.733 0.742 0.900 1.083 1.292 1.537 1.861 2.576 3.218 
0.8 0.723 0.734 0.890 1.084 1.310 1.578 1.956 2.785 3.536 
0.9 0.721 0.738 0.894 1.109 1.368 1.704 2.234 3.322 4.258 

........................................................................................................... 

........................................................................................................... 

0.4 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.449 
2.086 
1.810 
1.618 
1.482 
1.383 
1.312 

2.197 
1.869 
1.624 
1.455 
1.335 
1.248 
1.186 

1.262 1.143 
1.230 1.117 
1.219 

3.784 
3.545 
3.312 
3.112 
2.944 
2.805 
2.690 
2.600 
2.536 
2.507 

1.112 

3.348 
3.130 
2.927 
2.755 
2.609 
2.489 
2.392 
2.316 
2.264 
2.240 

2.372 2.588 
2.032 2.244 
1.773 1.975 
1.590 1.779 
1.457 1.634 
1.360 1.530 
1.291 1.459 
1.244 1.417 
1.217 1.401 
1.213 1.418 

3.264 
3.060 
2.873 
2.71 1 
2.572 
2.458 
2.367 
2.300 
2.257 
2.246 

3.222 
3.039 
2.868 
2.718 
2.588 
2.483 
2.405 
2.355 
2.332 
2.347 

2.787 
2.461 
2.195 
1.993 
1.844 
1.740 
1.678 
1.650 
1.655 
1.71 1 

3.191 
3.034 
2.884 
2.748 
2.633 
2.547 
2.493 
2.467 
2.474 
2.534 

2.990 
2.698 
2.445 
2.246 
2.099 
2.003 
1.952 
1.940 
1.974 
2.105 

3.228 
3.096 
2.965 
2.844 
2.748 
2.686 
2.656 
2.654 
2.694 
2.829 

3.160 
2.920 
2.700 
2.520 
2.391 
2.315 
2.283 
2.296 
2.393 
2.683 

3.282 
3.176 
3.066 
2.966 
2.894 
2.858 
2.851 
2.877 
2.976 
3.246 

3.361 3.457 
3.211 3.350 ~~~ 

3.067 3.251 
2.947 3.172 
2.873 3.140 
2.849 3.160 
2.869 3.224 
2.949 3.357 
3.182 3.670 
3.740 4.361 

3.427 
3.355 
3.277 
3.209 
3.173 
3.175 
3.207 
3.285 
3.493 
3.953 

3.598 
3.537 
3.471 
3.416 
3.395 
3.415 
3.467 
3.573 
3.829 
4.372 

2.0 0.01 2.588 2.347 2.244 2.136 2.011 1.910 1.809 1.753 1.864 
0.1 2.505 2.268 2.172 2.075 1.963 1.873 1.783 1.739 1.851 
0.2 2.414 2.188 2.103 2.016 1.915 1.834 1.753 1.719 1.834 
0.3 2.329 2.115 2.037 1.959 1.868 1.796 1.724 1.702 1.819 
0.4 2.253 2.049 1.977 1.907 1.826 1.765 1.705 1.696 1.816 
0.5 2.186 1.990 1.925 1.863 1.795 1.747 1.699 1.702 1.827 
0.6 2.126 1.941 1.882 1.830 1.776 1.742 1.702 1.718 1.849 
0.7 2.075 1.899 1.849 1.809 1.769 1.746 1.717 1.750 1.889 
0.8 2.036 1.868 1.826 1.799 1.775 1.769 1.763 1.832 1.987 
0.9 2.013 1.850 1.819 1.807 1.808 1.836 1.880 2.005 2.187 
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0.4 0.01 0.529 0.482 0.536 0.618 0.721 0.850 1.007 1.285 1.451 

1.0 0.01 1.228 1.098 1.094 1.116 1.153 1.223 1.309 1.468 1.588 
0.1 0.403 0.374 0.382 0.418 0.484 0.566 0.692 0.984 1.308 
0.2 0.244 0.226 0.223 0.244 0.291 0.344 0.439 0.699 1.095 

2.0 0.01 0.993 0.909 0.884 0.861 0.833 0.813 0.792 0.796 0.857 
0.1 0.461 0.445 0.457 0.474 0.496 0.519 0.550 0.651 0.771 
0.2 0.306 0.297 0.303 0.316 0.338 0.359 0.394 0.500 0.657 
0.3 0.233 0.225 0.223 0.232 0.254 0.273 0.308 0.416 0.598 
0.4 0.191 0.182 0.177 0.185 0.205 0.220 0.253 0.359 0.554 

Table 14 Dimensionless stress intensity factors for double comer cracks at a hole under 
wedge loading, r/t=0.25 

~~~~~~~~~~~~~~~~ ~~ 

a/c a/t (PO 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 0.01 
0.1 

0.4 0.01 
0.1 
0.2 

1.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 

2.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.402 0.405 0.508 0.617 0.735 0.873 1.034 1.305 1.457 
0.066 0.077 0.088 0.118 0.163 0.227 0.343 0.697 1.222 

0.763 0.690 0.760 0.856 0.963 1.089 1.221 1.415 1.513 
0.214 0.205 0.225 0.275 0.351 0.453 0.607 0.964 1.331 
0.118 0.120 0.124 0.152 0.203 0.270 0.389 0.722 1.191 

1.474 1.311 1.293 1.297 1.311 1.357 1.413 1.521 1.617 
0.719 0.658 0.675 0.719 0.790 0.888 1.021 1.301 1.520 
0.487 0.449 0.461 0.501 0.570 0.657 0.786 1.083 1.380 
0.367 0.340 0.345 0.377 0.439 0.514 0.635 0.919 1.264 
0.300 0.278 0.277 0.301 0.356 0.421 0.532 0.809 1.191 
0.257 0.238 0.233 0.254 0.303 0.360 0.462 0.735 1.146 

1.090 
0.692 
0.522 
0.427 
0.363 
0.316 
0.281 
0.256 
0.237 
0.223 

0.993 
0.656 
0.506 
0.416 
0.353 
0.307 
0.273 
0.247 
0.227 
0.213 

0.958 
0.665 
0.519 
0.427 
0.360 
0.311 
0.274 
0.247 
0.227 
0.213 

0.922 
0.677 
0.536 
0.442 
0.375 
0.324 
0.287 
0.260 
0.241 
0.229 

0.879 
0.687 
0.555 
0.462 
0.396 
0.348 
0.313 
0.286 
0.267 
0.256 

0.846 
0.702 
0.576 
0.484 
0.418 
0.372 
0.337 
0.310 
0.291 
0.281 

0.812 
0.718 
0.603 
0.515 
0.453 
0.410 
0.377 
0.352 
0.336 
0.333 

0.799 
0.779 
0.696 
0.618 
0.563 
0.522 
0.488 
0.462 
0.451 
0.451 

0.854 
0.867 
0.807 
0.748 
0.710 
0.685 
0.664 
0.649 
0.655 
0.686 
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0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 
0.2 

0.01 
0.1 
0.2 
0.3 
0.4 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.564 0.564 0.702 0.836 0.968 1.107 1.249 1.450 1.547 
0.159 0.166 0.206 0.265 0.341 0.442 0.596 0.968 1.364 
0.082 0.093 0.108 0.143 0.191 0.259 0.380 0.733 1.249 

0.949 0.855 0.933 1.035 1.141 1.258 1.369 1.518 1.589 
0.406 0.373 0.414 0.485 0.581 0.704 0.869 1.209 1.462 
0.251 0.236 0.258 0.310 0.388 0.490 0.645 0.998 1.357 
0.179 0.173 0.184 0.222 0.285 0.370 0.510 0.853 1.273 
0.141 0.139 0.144 0.174 0.226 0.296 0.420 0.756 1.219 

1.643 1.459 
1.039 0.938 
0.783 0.711 
0.638 0.581 
0.540 0.492 
0.468 0.427 
0.416 0.380 
0.378 0.345 
0.352 0.320 
0.336 0.305 

1.166 
0.900 
0.735 
0.632 
0.561 
0.507 
0.465 
0.431 
0.403 
0.382 

1.061 
0.837 
0.696 
0.603 
0.536 
0.485 
0.445 
0.412 
0.386 
0.365 

1.430 
0.948 
0.724 
0.591 
0.498 
0.431 
0.380 
0.344 
0.319 
0.304 

1.019 
0.830 
0.701 
0.610 
0.543 
0.492 
0.45 1 
0.418 
0.392 
0.372 

1.424 
0.986 
0.765 
0.630 
0.534 
0.464 
0.412 
0.375 
0.350 
0.338 

0.976 
0.824 
0.707 
0.621 
0.555 
0.504 
0.465 
0.434 
0.409 
0.392 

1.424 
1.045 
0.832 
0.696 
0.600 
0.530 
0.478 
0.441 
0.417 
0.408 

0.925 
0.814 
0.712 
0.631 
0.570 
0.523 
0.486 
0.458 
0.436 
0.423 

1.457 
1.137 
0.927 
0.786 
0.686 
0.614 
0.561 
0.521 
0.495 
0.491 

0.884 
0.810 
0.722 
0.647 
0.589 
0.545 
0.511 
0.484 
0.464 
0.455 

1.499 
1.252 
1 .055 
0.914 
0.815 
0.744 
0.691 
0.652 
0.632 
0.649 

0.842 
0.804 
0.733 
0.667 
0.615 
0.576 
0.545 
0.521 
0.506 
0.510 

1.588 
1.472 
1.329 
1.205 
1.112 
1.044 
0.991 
0.955 
0.950 
0.993 

0.823 
0.830 
0.789 
0.744 
0.707 
0.678 
0.653 
0.633 
0.627 
0.640 

1.676 
1.631 
1.543 
1.462 
1.406 
1.371 
1.347 
1.337 
1.370 
1.473 

0.876 
0.902 
0.877 
0.843 
0.817 
0.800 
0.785 
0.776 
0.784 
0.819 
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Table 16 Dimensionless stress intensity factors for double comer cracks at a hole under 
wedge loading, r/t = 1 .O 

a/c a/t cpo 0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 
0.2 
0.3 
0.4 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.723 0.721 0.890 1.044 1.184 1.320 1.444 
0.307 0.311 0.388 0.479 0.585 0.715 0.888 
0.178 0.185 0.229 0.292 0.374 0.482 0.644 
0.119 0.128 0.154 0.201 0.265 0.354 0.500 
0.089 0.100 0.116 0.152 0.204 0.276 0.405 

1.117 
0.642 
0.456 
0.348 
0.277 
0.228 
0.196 
0.174 
0.158 

1.003 
0.581 
0.415 
0.320 
0.258 
0.216 
0.188 
0.169 
0.155 

1.089 
0.642 
0.458 
0.351 
0.280 
0.232 
0.199 
0.176 
0.161 

1.197 
0.733 
0.532 
0.414 
0.334 
0.278 
0.240 
0.215 
0.199 

1.303 
0.845 
0.631 
0.502 
0.414 
0.353 
0.311 
0.283 
0.268 

1.415 
0.984 
0.757 
0.618 
0.521 
0.454 
0.407 
0.376 
0.360 

1.515 
1.149 
0.925 
0.781 
0.682 
0.613 
0.564 
0.532 
0.523 

1.815 
1.394 
1.136 
0.973 
0.858 
0.770 
0.701 
0.646 
0.604 
0.576 

1.608 
1.244 
1.018 
0.874 
0.771 
0.692 
0.631 
0.582 
0.545 
0.519 

1.572 
1.238 
1.022 
0.879 
0.775 
0.696 
0.635 
0.586 
0.550 
0.526 

1.558 1.549 
1.259 1.297 
1.055 1.108 
0.914 0.973 
0.811 0.873 
0.732 0.798 
0.672 0.743 
0.627 0.703 
0.594 0.676 
0.576 0.668 

1.575 
1.370 
1.196 
1.065 
0.966 
0.895 
0.842 
0.804 
0.782 
0.789 

1.610 
1.458 
1.309 
1.187 
1.095 
1.030 
0.982 
0.950 
0.943 
0.989 

1.261 
1.101 
0.969 
0.870 
0.795 
0.736 
0.688 
0.648 
0.617 
0.594 

1.145 
1.009 
0.896 
0.810 
0.742 
0.688 
0.645 
0.609 
0.581 
0.559 

1.098 
0.982 
0.883 
0.803 
0.738 
0.686 
0.644 
0.610 
0.583 
0.564 

1.047 
0.956 
0.870 
0.798 
0.737 
0.689 
0.650 
0.619 
0.596 
0.581 

0.989 
0.924 
0.853 
0.790 
0.736 
0.694 
0.660 
0.635 
0.616 
0.608 

0.942 
0.901 
0.844 
0.789 
0.743 
0.707 
0.678 
0.656 
0.641 
0.642 

0.895 
0.875 
0.834 
0.790 
0.753 
0.724 
0.701 
0.682 
0.675 
0.693 

1.598 
1.248 
1.023 
0.874 
0.775 

1.640 
1.435 
1.266 
1.136 
1.043 
0.979 
0.936 
0.914 
0.936 

1.691 
1.623 
1.528 
1.440 
1.373 
1.326 
1.291 
1.273 
1.296 
1.394 

0.870 
0.877 
0.856 
0.83 1 
0.810 
0.794 
0.782 
0.774 
0.784 
0.824 

1.667 
1.522 
1.419 
1.342 
1.295 

1.700 
1.604 
1.518 
1.449 
1.405 
1.384 
1.378 
1.394 
1.468 

1.780 
1.750 
1.689 
1.630 
1.591 
1.570 
1.560 
1.569 
1.629 
1.782 

0.926 
0.942 
0.930 
0.912 
0.898 
0.890 
0.885 
0.885 
0.906 
0.962 
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0.2 

0.4 

1 .o 

2.0 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.797 0.794 0.978 1.140 1.283 1.416 1.533 1.669 
0.405 0.407 0.508 0.617 0.739 0.883 1.060 1.390 
0.261 0.265 0.331 0.413 0.513 0.639 0.812 1.189 
0.182 0.189 0.234 0.299 0.383 0.494 0.659 1.045 
0.136 0.145 0.176 0.228 0.300 0.399 0.556 0.944 
0.108 0.119 0.141 0.184 0.247 0.336 0.486 0.878 
0.090 0.102 0.118 0.156 0.213 0.295 0.438 0.835 

1.193 
0.785 
0.590 
0.473 
0.391 
0.330 
0.285 
0.251 
0.228 
0.215 

1.898 
1.576 
1.342 
1.179 
1.059 
0.966 
0.892 
0.833 
0.788 
0.757 

1.310 
1.194 
1.087 
1.001 
0.93 1 
0.873 
0.825 
0.785 
0.753 
0.730 

1.071 
0.707 
0.534 
0.430 
0.358 
0.305 
0.266 
0.237 
0.217 
0.206 

1.681 
1.400 
1.196 
1.053 
0.947 
0.864 
0.799 
0.747 
0.707 
0.680 

1.189 
1.087 
0.997 
0.922 
0.860 
0.809 
0.766 
0.731 
0.702 
0.681 

1.160 
0.778 
0.588 
0.473 
0.392 
0.333 
0.289 
0.256 
0.233 
0.221 

1.641 
1.383 
1.191 
1.053 
0.948 
0.866 
0.801 
0.751 
0.713 
0.689 

1.138 
1.051 
0.972 
0.905 
0.847 
0.799 
0.758 
0.726 
0.700 
0.682 

1.271 
0.879 
0.675 
0.548 
0.459 
0.394 
0.346 
0.311 
0.288 
0.277 

1.623 
1.393 
1.215 
1.082 
0.979 
0.899 
0.838 
0.793 
0.761 
0.745 

1.084 
1.015 
0.949 
0.889 
0.836 
0.792 
0.757 
0.728 
0.707 
0.695 

1.377 
0.997 
0.783 
0.648 
0.553 
0.484 
0.434 
0.400 
0.378 
0.374 

1.61 1 
1.418 
1.258 
1.133 
1.035 
0.961 
0.908 
0.869 
0.846 
0.844 

1.023 
0.973 
0.920 
0.869 
0.824 
0.786 
0.757 
0.735 
0.720 
0.718 

1.487 
1.137 
0.919 
0.776 
0.675 
0.604 
0.553 
0.519 
0.501 
0.512 

1.634 
1.478 
1.336 
1.219 
1.127 
1.060 
1.012 
0.979 
0.964 
0.985 

0.973 
0.940 
0.899 
0.857 
0.820 
0.790 
0.767 
0.750 
0.742 
0.751 

1.584 
1.294 
1 .OS8 
0.945 
0.845 
0.777 
0.730 
0.702 
0.701 
0.758 

1.702 
1.541 
1.402 
1.289 
1.206 
1.151 
1.116 
1.105 
1.147 
1.293 

1.666 1.746 
1.551 1.690 
1.434 1.620 
1.331 1.552 
1.250 1.499 
1.192 1.464 
1.151 1.444 
1.127 1.444 
1.132 1.492 
1.201 1.633 

0.923 
0.906 
0.878 
0.845 
0.817 
0.795 
0.779 
0.768 
0.769 
0.799 

0.896 
0.897 
0.886 
0.868 
0.853 
0.844 
0.838 
0.840 
0.861 
0.919 

1.729 
1.602 
1.513 
1.443 
1.398 
1.378 
1.379 

1.758 
1.674 
1.602 
1.543 
1 .504 
1.489 
1.493 
1.523 
1.621 
1.857 

1.836 
1.805 
1.761 
1.714 
1.682 
1.669 
1.671 
1.694 
1.778 
1.970 

0.953 
0.961 
0.955 
0.943 
0.933 
0.929 
0.930 
0.938 
0.970 
1.043 
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Table 18 Dimensionless stress intensity factors for double comer cracks at a hole under 
wedge loading, r/t = 2.5 

a/c a/t ( P O  0.1 11.3 22.5 33.8 45.0 56.3 67.5 82.5 89.9 

0.2 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.864 
0.530 
0.378 
0.287 
0.227 

0.860 
0.529 
0.379 
0.292 

1.056 
0.659 
0.474 
0.364 
0.289 
0.236 
0.199 
0.172 
0.155 
0.144 

1.226 
0.791 

1.370 
0.928 
0.698 
0.557 
0.460 
0.391 
0.343 
0.310 
0.290 
0.286 

1 SO1 
1.083 
0.841 
0.689 
0.584 
0.511 
0.460 
0.426 
0.408 
0.417 

1.610 
1.256 
1.022 
0.867 
0.761 
0.689 
0.641 
0.612 
0.611 
0.668 

1.731 1.782 
1.536 1.689 

0.579 
0.452 
0.365 
0.303 
0.259 
0.228 
0.208 
0.199 

1.373 1.613 
1.246 1.552 
1.156 1.517 
1.098 1.507 
1.064 1.520 
1.058 1.564 
1.112 1.688 
1.288 1.983 

0.232 
0.184 0.191 
0.154 0.162 
0.132 0.142 
0.118 0.130 
0.109 0.123 

0.4 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.259 
0.951 
0.760 
0.638 
0.551 
0.483 
0.431 
0.389 
0.357 
0.336 

1.129 
0.854 
0.685 
0.576 
0.499 
0.440 
0.393 

1.221 
0.935 
0.753 
0.635 
0.549 
0.483 
0.432 
0.393 
0.363 
0.344 

1.334 
1.045 
0.853 
0.724 
0.631 
0.560 
0.507 
0.467 
0.440 
0.426 

1.441 
1.164 
0.970 
0.835 
0.737 
0.665 
0.614 
0.578 
0.556 
0.555 

1 3 0  
1.302 
1.112 
0.975 
0.874 
0.804 
0.756 
0.724 
0.713 
0.738 

1.643 
1.444 
1.275 
1.145 
1.050 
0.987 
0.946 
0.927 
0.942 
1.034 

1.755 1.809 
1.647 1.749 
1.541 1.690 
1.451 1.640 
1.387 1.612 
1.349 1.610 
1.332 1.628 
1.342 1.677 
1.418 1.809 
1.631 2.109 

0.357 
0.330 
0.313 

1.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.968 
1.755 
1.569 
1.424 
1.308 
1.215 
1.140 
1.079 
1.033 
1.003 

1.742 
1.553 
1.392 
1.266 
1.165 
1.083 
1.017 
0.964 
0.924 
0.899 

1.699 
1.526 
1.377 
1.257 
1.159 
1.079 
1.016 
0.966 
0.930 
0.909 

1.679 1.664 
1.526 1.536 
1.390 1.416 
1.276 1.313 
1.182 1.227 
1.107 1.161 
1.049 1.113 
1.007 1.081 
0.979 1.066 
0.969 1.076 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

.685 1.716 
,333 1.641 
..480 1.557 
..386 1.480 

1.794 1.885 
1.757 1.863 
1.707 1.829 
1.658 1.795 
1.624 1.776 
1.608 1.776 
1.608 1.793 
1.629 1.835 
1.711 1.948 
1.909 2.197 

..310 1.418 

..255 1.376 

..218 1.351 

..196 1.342 

..194 1.367 

..236 1.470 

2.0 0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.351 
1.278 
1.204 
1.138 
1.081 
1.031 
0.988 
0.951 
0.922 
0.901 

1.225 
1.161 
1.097 
1.040 
0.990 
0.946 
0.909 
0.878 
0.853 
0.835 

1.172 
1.116 
1.061 
1.011 
0.965 
0.925 
0.891 
0.863 
0.842 
0.829 

1.116 
1.071 
1.026 
0.982 
0.941 
0.906 
0.877 
0.856 
0.841 
0.835 

1.052 
1.020 

0.999 
0.979 
0.951 
0.921 
0.895 
0.875 
0.862 
0.854 
0.856 
0.879 

0.947 
0.937 
0.918 
0.896 
0.877 
0.866 
0.859 
0.858 
0.871 
0.919 

0.919 0.977 
0.919 0.982 
0.911 0.977 
0.900 0.969 
0.892 0.965 
0.891 0.967 
0.894 0.975 
0.904 0.991 
0.939 1.036 
1.017 1.130 

0.984 
0.947 
0.913 
0.885 
0.864 
0.850 
0.843 
0.850 
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Fig.1 Double corner cracks at a hole under remote tension 
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Fig. 2 Decomposition of the corner cracked body into 
(a) a-slice, (b) c-slice 
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Fig.6 Definition of crack parameters 
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Fig. 7 Points on the crack surface where 
displacements are evaluated. 
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Fig.23 Normalized crack mouth displacement under remote tension 
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Fig.BI. Schematic representation of the interpolation function. 

62 



F m  Approved 
REPORT DOCUMENTATION PAGE I OMBNo. 0704-0188 

1. AGENCY USE ONLY (laawe &I&) 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED 

Julv 1995 Technical Memorandum 
I I 

1. TITLE AND SUBTITLE 

Analysis of Comer Cracks at Hole by a 3-D Weight Function Method with 
Stresses from Finite Element Method 

Ir. DISTRIBUTION I AVAILABILITY STATEMENT 

Unclassified - Unlimited 

Subject Category 24 

i. AUTHOR(S) 

W. Zhao, J. C. Newman, Jr., M. A. Sutton, X. R. Wu, and 
K. N. Shivakumar 

r. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

NASA Langley Research Center 
Hampton, VA 23681-0001 

12b. DISTRIBUTION CODE 

I. SPONSORING I MONITORING AGENCY NAME@) AND ADDRESS(ES) 

National Aeronautics and Administration 
Washington, DC 20546-0001 

4. SUBJECTTERMS 

Stress-intensity factor: Weight functions; Finite-element method; Corner crack . .  

1. SUPPLEMENTARY NOTES 

15. NUMBER OF PAGES 

63 

A04 
16. PRICECODE 

5. FUNDING NUMBERS 

WU 538-02-10-01 

7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 
OF REPORT OF THIS PAGE 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

19. SECURITY CLASSIFICATION 20. UMlTATlON OF ABSTRACT 
OF ABSTRACT 

IO. SPONSORING I MONITORING 
AGENCY REPORT NUMBER 

Unclassified 

NASA TM-110144 

Unclassified 

L 


